450. Infrared Absorption Spectra of Some Urea Inclusion Compounds.

By A. R. DANIEWSKI, MRS. U. DABROWSKA, Z. PIASEK, and T. URBAŃSKI.

Infrared absorption spectra of urea inclusion compounds with n-paraffins and their 1-bromo- and 1-hydroxy-derivatives are reported. A band 1650 $cm.^{-1}$ is typical for inclusion compounds and corresponds to a C=N bond. An explanation is given on the basis of resonance structures of urea. Owing to hydrogen bonding O-H stretching vibrations of alcohols disappear in the inclusion compounds.

THERE has been considerable study of the structure of urea inclusion compounds by infrared absorption spectroscopy,¹⁻⁴ but some unsolved problems remain. We report here the infrared spectra of inclusion compounds composed of urea with some n-alkanes and their 1-bromo- and 1-hydroxy-derivatives, also a consideration of changes in the structures of urea which occur on formation of complexes, and the effect of the stability of the complexes on the spectra. For comparison, the spectra of a few O-alkyl derivatives of isourea have also been examined.

EXPERIMENTAL

Urea, crystallized from methanol, had m. p. 132.5°. The following alcohols were used, having been purified by distillation: octan-1-ol, b. p. 195°, n_p²⁰ 1.4331; nonan-1-ol, b. p. 212°, $n_{\rm p}^{20}$ 1·4332; decan-1-ol, b. p. 230°, $n_{\rm p}^{20}$ 1·4365; hexadecan-1-ol, b. p. 178—182°/12 mm., m. p. 50°.

Alkyl bromides were prepared from the corresponding alcohols by known methods: 1-bromooctane, b. p. 199—200°, $n_{\rm p}^{20}$ 1·4526; 1-bromononane, b. p. 220°, $n_{\rm p}^{20}$ 1·4541; 1-bromodecane, b. p. 148—150°/18 mm., $n_{\rm p}^{20}$ 1·4551; 1-bromo-hexadecane, b. p. 201—203°/21 mm., m. p. 14°.

The following normal hydrocarbons were prepared from the alkyl bromides by Grignard reactions: octane, b. p. 126°, $n_{\rm D}^{20}$ 1·3975; nonane, b. p. 150—151°, $n_{\rm D}^{20}$ 1·4055; decane, b. p. 173°, $n_{\rm p}^{20}$ 1·4120, hexadecane, b. p. 145°/10 mm., m. p. 20°.

Application of the method of Stieglitz and McKee⁵ to cyanamide and the corresponding alcohol gave O-methyl-, m. p. 44-45° [hydrochloride (Found: N, 24.55. Calc. for C₂H₂N₂ClO: N, 24·8%)], O-ethyl-, m. p. $41-42^{\circ}$ [hydrochloride (Found: N, 22·8. Calc. for $C_3H_9N_2ClO$: N, 22.65%)], and O-propyl-isourea, m. p. 63-64° [hydrochloride (Found: N, 20.2. Calc. for C₄H₁₁N₂ClO: N, 20·4%)].

The inclusion compounds of urea and hydrocarbons or alkyl bromides or alcohols were prepared by standard methods,⁶ and analyses are reported in Table 1. The complexes were analysed either by evaporating the hydrocarbon (guest) at room temperature or by determining the nitrogen content. The octane and nonane complexes had lost their guests at room temperature only after 3 and 10 days, respectively.

¹ Stuart, Rec. Trav. chim., 1956, 75, 906; Lautsch, Bandel, and Broser, Z. Naturforsch., 1956, 11b, 282; Corish and Chapman, J., 1957, 1746; Corish and Davidson, J., 1958, 927; Caroti and Cassi, Riv. Combustibili, 1958, 12, 451; Illuminati, Grassini, and Serocco, Atti Accad. Naz. Lincei, Rend. Classe Sci. fis. mat. nat., 1958, 24, 435; Mecke and Kutzelningg, Z. analyt. Chem., 1959, 170, 114.

¹/₂ 2 Stewart, J. Chem. Phys., 1957, 26, 248.
 ² Stewart, J. Chem. Phys., 1957, 26, 248.
 ³ Barlow and Corish, J., 1959, 1706.
 ⁴ Fischer and McDowell, Canad. J. Chem., 1969, 2, 187.
 ⁵ Stieglitz and McKee, Ber., 1900, 33, 1517.

⁶ Schlenk, Annalen, 1949, 565, 204.

ТΑ	BLE	1.

Inclusion compounds with urea as host.

Guest	Wt. loss	N (%)	$\frac{\text{Urea}}{\text{Guest}}$ (mol.)	Guest	N (%)	$\frac{\text{Urea}}{\text{Guest}}$ (mol.)	Guest	N (%)	$\frac{\text{Urea}}{\text{Guest}}$ (mol.)
C.H.	21.0	(70)	$7 \cdot 2$	C ₈ H ₁₇ Br	32.2	7.2	C ₈ H ₁₇ ·OH	35.4	6.8
$C_{0}H_{20}^{10}$	22.0		7.65	C ₉ H ₁₉ Br	$32 \cdot 4$	7.8	C ₉ H ₁₉ ·OH	35.3	7.45
C10H.		36.3	8.3	C ₁₀ H ₂₁ Br	32.9	8.9	C ₁₀ H ₂₁ ·OH	$35 \cdot 2$	8.1
C16H34		35.5	12.1	C ₁₆ H ₃₃ Br	$32 \cdot 2$	12.7	C ₁₆ H ₃₃ ∙OH	$35 \cdot 2$	12.3

The stability towards organic solvents was examined by passing ether (5 ml.) slowly through a layer of the complex (0.3 g.). The nitrogen contents before and after washing were: hexadecane complex 35.8, 36.8%; 1-bromodecane complex 33.6, 34.95%; hexadecan-1-ol complex, 35.1, 38.7%. However, the compound could gradually be completely washed out; *e.g.*, pure urea resulted from washing of a decan-1-ol complex with ~150 c.c. of ether.

Spectroscopic measurements were made with a Hilger H-800 double-beam spectrophotometer with a 60° sodium chloride prism. Liquids were examined as films between plates of sodium chloride. Solids were mainly used as Nujol mulls. In some instances thin films of inclusion compounds were formed by evaporating a solution of the complexes in ethanol or methanol on sodium chloride plates. Spectra of films of complexes were similar to these of mulls.

The main features of the spectra are given in Tables 2-4.

TABLE 2.

Infrared spectra of alkanes, bromoalkanes, and alkanols ($R = C_8H_{17}, C_9H_{19}, C_{10}H_{21}$, and $C_{16}H_{33}$).

		10 33/	
RH	RBr	ROH (in Nujol)	Assignment
		3350-3330	H-bonded O-H stretch
2932—2927s, vs	2932—2020s,	29342932s,vs	C-H stretch of CH ₃ and CH ₂
2668-2850s	2868 - 2855 s	2870-2868s	• •
1467m	1465—1462m	1467—1465m	CH ₂ deformn.
1382w	1380w	1380 - 1375 w	C–CH ₃ deformn.
	1255 - 1250 w		$C-CH_2Br$ sheletal
		1120w	OH deformn. C-O stretch
722w	724722w	725—722w	[CH ₂] ₄ skeletal

TABLE 3.

Infrared spectra of inclusion compounds of urea with the component stated (for assignments see second part of the Table).

(Urea)	$C_{8}H_{18}$	C_9H_{20}	$C_{10}H_{22}$	$C_{16}H_{34}$	$C_8H_{17}Br$	C ₉ H ₁₉ Br	$C_{10}H_{20}Br$	$C_{16}H_{33}Br$
3455s	3450s	344 0s	3440s		34 29s	3415s	3420s	
3350s	337 0s	3365s	337 0s	3405s	$3372 \mathrm{sh}$	33 70s	$3380 \mathrm{sh}$	3390s
$3265 \mathrm{sh}$	3235s	3220s	3230s	3225s	3224s	3220s	3230m	3225s
l 687m	1675s	1680s	1680s	1680s	1678s	1677s	1680m	1677s
	$1650 \mathrm{sh}$	$1650 \mathrm{sh}$	$1650 \mathrm{sh}$	1650 vs	1650m	1649s	1651s	1651vs
1627s	1628s	1630s	16 3 0s	$1630 \mathrm{sh}$	$1630 \mathrm{sh}$	1628w	1631 sh	
1600s	1598vs	1600s	1596vs	1595vs	1596s	1595s	1599s	1597vs
1465s	1488m	1488m	1490m	1490s	1495m	1488m	1488m	1490s
l155m	1156m	1156m	1160m	1157m	1155m	1161m	1156m	1160m
1055w	1050m	1050w	1055w	1065m	1060w	1060w	1065w	1052w
1000w	1014w	1014w	1014w	1014w	1014w	1014w	1014w	1014w
790w	792w	792w	792w	792w	792w	792w	792w	792w
	C ₈ H ₁₇ ∙OH	C ₉ H ₁₉ ∙OH	C ₁₀ H ₂₁ ∙OH	C ₁₆ H ₃₃ •C	H			
	3435s							
	3370s	3400s	338 0s	3350	1			
	3225s	3225s	3220s	3230s	} N-H stret	cn		
	1680s	1680s	1680s	1680s	C=O strete	ch		
	1655s	1648vs	1650s	1650s	C=N stret	ch		
	1630w	1630w						
	1600vs	1598vs	1598s	1557 vs	C=O strete	ch & NH d	leformn.	
	1486s	1490s	1495s	1493s	C=N stret	ch		
	1156m	1161m	1160m	1160m	NH ₂ rock			
	1052w	1055w	1065w	1065w	NH ₂ rock	or wag		
	1014w	1014w	1015w	1018w	C-N stret	ch or ČN s	cissor	
	792w	792w	795w	795w	C=O and I	NH wag		

4 G

TABLE 4.

Infrared spectra of N-methylurea and O-alkylisoureas (Me, Et, and Prⁿ).

NH2·CO·NHMe	NH2·C(OR):NH	Assignment
3435s 3330s 2220ab	3465—3450m 3235—3225s 2180—2170c	N–H stretch
1618s	1654—1650s,vs 1610—1600m.w	C=N stretch N-H
1578vs 1420m	1461—1439ms	C-N stretch or C-NH ₂ scissor

DISCUSSION

Stability of the Inclusion Compounds.—Since urea inclusion compounds with hydrocarbons containing less than 16 carbon atoms are unstable, the compounds studied must be freshly prepared. This applies also to Nujol mulls, since the Nujol may act as solvent. Washing inclusion compounds with ether (to remove an excess of the guest) may extract some of the guest and yield " free " urea. Inclusion compounds of alkyl bromides and alcohols with urea are more stable towards the "ageing" than those of hydrocarbons; however, complexes of alcohols and urea are less stable towards washing with polar solvents. As a result, examination of spectra of less stable inclusion compounds is virtually examination of the superposed spectra of the inclusion compound and "free" urea, this aspect being more pronounced for inclusion compounds which have been treated with solvents. No attention seemed to have been paid so far to these circumstances.

Thus the bands at 3450-3415 cm.⁻¹ in our investigations, and similar frequencies found by others,^{3,4} should be assigned to NH out-of-phase vibrations of "free" urea, and the bands at 1629-1627 cm.⁻¹ to NH₂ bending vibrations of "free" urea,^{2,7} contrary to the views of some authors.³ We believe that "pure" spectra of inclusion compounds have been obtained only for particularly stable inclusion compounds, namely, those of urea with hexadecane, 1-bromohexadecane, nonan-1-ol, decan-1-ol, and hexadecan-1-ol, none of which includes bands at \sim 3440 and \sim 1628 cm.⁻¹.

Spectra of Urea and its Inclusion Compounds.—The spectra of all the inclusion compounds examined are almost identical and independent of the nature of the guest; this is particularly noticeable for the more stable compounds.

The spectra were similar to that of urea itself, but somewhat shifted, which suggests that the urea is subjected to some modification. It is known ⁸ that the C-N and C=O bonds of urea are shorter and longer, respectively, than deduced from the conventional formula,

$$\overset{\circ}{:} O = C < \overset{\circ}{:} \overset{\circ}{:} \overset{\circ}{:} O = C < \overset{\circ}{:} \overset{\circ}{:} O = C < \overset{\circ}{:} \overset{\circ}{:} O =$$

suggesting resonance between structures A, B, and C. Our experiments confirm the resonance; structures B and C are favoured in the inclusion compounds, as appears from the shift of the typical urea bands, e.g., C=O stretching, to lower frequencies.

Band at 1650 cm.⁻¹. This band is characteristic of a urea inclusion compound. It is very prominent for the stable compounds, with frequencies 1655-1649 cm.⁻¹; it appears as a shoulder of the same frequency for the less stable compounds. It is not present in the spectrum of urea but is very strong in spectra of O-alkylisoureas at 1654—1651 cm.⁻¹. It represents the C=N bond. For the unstable complexes it is superposed on the band 1631—1628 cm.⁻¹ due to $\rm NH_2$ deformation vibrations of "free" urea. Therefore we suggest that the band 1650 cm.⁻¹ is the result of the resonance shifting of the molecule of urea in complexes towards the structures B and C.

O-H Stretching vibrations. Bands at 3345 cm.⁻¹ are present in the spectra of alcohols

Yamaguchi, Miyazawa, Shimanouchi, and Mizushima, Spectrochim. Acta, 1957, 10, 170.
 Wyckhoff and Corey, Z. Krist., 1934, A, 89, 462.

used to form inclusion compounds. They are of medium intensity, broad, and of relatively low frequency, indicating intermolecular hydrogen bonds. The bands completely disappear from the spectra of their inclusion compounds with urea. That this is due to formation of many new strong hydrogen bonds is supported by the fact that hydroxyl bands exist in the spectra of mechanical mixtures of the alcohols and urea.

Influence of Water on the Formation of the Inclusion Compounds.—McAdie and Frost⁹ found that in the gaseous state a complex of urea with octane is formed only in the presence of traces of water, methanol, or ethanol vapour. On the other hand it has been suggested ¹⁰ that these highly polar solvents stabilize the zwitterion resonance structures. This further supports our view on the presence of the resonance structures B and C in the complexes.

INSTITUTE OF ORGANIC CHEMISTRY, POLISH ACADEMY OF SCIENCES, WARSAW 10, POLAND. [Received, August 3rd, 1961.]

⁹ McAdie and Frost, Canad. J. Chem., 1955, 33, 1275.
¹⁰ Wheland, "Resonance in Organic Chemistry," Wiley, New York, 1955.

2343